翻訳と辞書
Words near each other
・ Glossary of legal terms in technology
・ Glossary of levelling terms
・ Glossary of library and information science
・ Glossary of Lie algebras
・ Glossary of literary terms
・ Glossary of machine vision
・ Glossary of Mafia-related words
・ Glossary of magic (illusion)
・ Glossary of mammalian dental topography
・ Glossary of manias
・ Glossary of mergers, acquisitions, and takeovers
・ Glossary of meteoritics
・ Glossary of military abbreviations
・ Glossary of military modeling and simulation
・ Glossary of mill machinery
Glossary of module theory
・ Glossary of motorcycling terms
・ Glossary of motorsport terms
・ Glossary of musical terminology
・ Glossary of names for the British
・ Glossary of nautical terms
・ Glossary of Nazi Germany
・ Glossary of New Thought terms
・ Glossary of New Zealand railway terms
・ Glossary of North American horse racing
・ Glossary of North American railway terms
・ Glossary of notaphily
・ Glossary of numismatics
・ Glossary of oilfield jargon
・ Glossary of operating systems terms


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Glossary of module theory : ウィキペディア英語版
Glossary of module theory
Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.
==Basic definition==

; left R-module
: A left module M over the ring R is an abelian group (M, +) with an operation R \times M \to M (called scalar multipliction) satisfies the following condition:
::\forall r,s \in R, m,n \in M,
:# r (m + n) = rm + rn
:# r (s m) = (r s) m
:# 1_R \, m = m
; right R-module
: A right module M over the ring R is an abelian group (M, +) with an operation M \times R \to M satisfies the following condition:
:: \forall r,s \in R, m,n \in M,
:# (m + n) r = m r + n r
:# (m s) r = r (s m)
:# m 1_R = m
: Or it can be defined as the left module M over R^\textrm (the opposite ring of R).
; bimodule
: If an abelian group M is both a left S-module and right R-module, it can be made to a (S,R)-bimodule if s(mr) = (sm)r \, \forall s \in S, r \in R, m \in M.
; submodule
: Given M is a left R-module, a subgroup N of M is a submodule if RN \subseteq N .
; homomorphism of R-modules
: For two left R-modules M_1, M_2, a group homomorphism \phi: M_1 \to M_2 is called homomorphism of R-modules if r \phi(m) = \phi (r m) \, \forall r \in R, m \in M_1 .
; quotient module
: Given a left R-modules M, a submodule N, M/N can be made to a left R-module by r(m+N) = rm + N \, \forall r \in R, m \in M . It is also called a factor module.
; annihilator
: The annihilator of a left R-module M is the set \textrm(M) := \ . It is a (left) ideal of R.
: The annihilator of an element m \in M is the set \textrm(m) := \.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Glossary of module theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.